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Abstract

The accessibility of horizontal vibration in a 3-D two-link flexible robot shows configuration-dependent
nature (International Journal of Robotics Research 16 (1997) 567). This paper deals with physical meaning
of the accessibility issue in conjunction with system mode approach. The identifiability which is dual to the
accessibility is also discussed. The analysis of horizontal vibration based on system mode approach takes an
important role in examining the vibration accessibility. The ensuing Lagrangian dynamic formulation
enables the formal definition of rigid–flexible coupled dynamic terms which show clear physical meaning.
Both theoretical and numerical studies are presented to elucidate the meaning of the accessibility and the
identifiability of horizontal vibration. In addition, the experimental results support the theoretical results.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The use of flexible robot has a lot of advantages for particular needs: lightweight structures, low
power consumption, safety for humans, and provision of passive compliance. The elastic
structures bring about vibrations from the slender shapes of robot’s links and their low stiffness.
The vibrations must be compensated either by active control or by passive control to increase
productivity. The modal feedback approach is one of the common control methods in suppressing
vibration. Actual sensors (strain gauges or piezo films) measure vibrations that contain all the
natural modes. If these sensors are distributed along the flexible body, the signals can be
reconstructed into mode data by projecting onto mode shape functions. A finite number of
sensors can determine a finite number of modes; there always exist unmeasured and uncontrolled

ARTICLE IN PRESS

*Corresponding author. Tel.: +82-54-279-2844; fax: +82-84-279-5899.

E-mail address: jncheong@postech.ac.kr (J. Cheong).

0022-460X/03/$ - see front matter r 2003 Elsevier Ltd. All rights reserved.

doi:10.1016/S0022-460X(03)00008-7



residual modes [2]. It is important for the controller and the observer not to excite the residual
modes [3]. The choice of the actuator position is another important factor in regard to vibration
control. Every actuator in a system has its own actuator influence coefficient (AIC) that makes us
guess the level of the controllability for vibration modes by that actuator. If the AIC of a certain
mode is zero, the actuator cannot control the mode. Anyhow, if we would like to control the
mode, we have two options to take: to re-place the actuator to other position or to change the
robot structure in order that the AIC of the mode is non-zero [4,5]. The controllability and
observability related with modal feedback of the flexible systems were studied by many authors,
for example, Refs. [6–8].

In a PUMA-typed 3-D two-link flexible robot, shown in Fig. 1, the horizontal motion is defined
only by the rotation of joint 1 (or base joint). The rotations of the other two joints constitute
vertical motion. The vibration in the vertical plane is known to be controllable. On the other
hand, the vibrations in the direction of horizontal motion are not always controllable. At certain
configurations, some or all of the modes of horizontal vibration are uncontrollable. Tosunoglu
et al. [9] and Konno et al. [1] examined this problem. They addressed the vibration controllability
and accessibility by linearizing systems at a configuration and checked the rank of the
controllability matrix. In addition, by neglecting Coriolis and centripetal force they quantify
the level of controllability through accessibility index, which was conceptually similar to the
magnitude of AIC. One thing they had missed is the physical meaning of those uncontrollable
configurations.

The vibration controllability of flexible objects handled by rigid robots can be regarded as the
same class of problems because once grasped, the payload is fixed to the robot body, and the
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Fig. 1. Schematic of a 3-D two-link flexible robot.
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robot becomes a flexible robot eventually. Zhou et al. [10] adopted the concept of vibration
accessibility for evaluating the degree of the vibration controllability. Recently, the study on the
measure for amount of vibration controllability in a redundant flexible robot depending on the
configurations was reported [11].

In this paper, we focus on the accessibility and the identifiability of horizontal vibration for 3-D
two-link flexible robots. We explore the physical meaning of the configurations where vibration
modes are inaccessible and/or unidentifiable. We adopt system mode vibration analysis for
interpreting the equations of motion, depending on configurations, in relation to rigid–flexible
coupled dynamics; it was difficult to interpret the physical meaning of rigid–flexible coupled
dynamics using the conventional component mode analysis due to the complexity of the involved
modal terms. This paper is organized as follows: the preliminaries are presented in Section 2, the
development of equation of horizontal motion using system mode approach is given in Section 3,
and in Section 4, the accessibility and identifiability are dealt with. Finally, we make concluding
remarks in Section 5.

2. Preliminaries

2.1. Equations of motion for general flexible robots

The assumed mode of each flexible member is to be combined with, whenever one formulates
generic equations of motion for flexible systems. Every elastic component is modelled as series
solutions with infinite degrees. Book [12] added the effect of flexibility to the extended
homogenous transform matrix for flexible robots with articulated joints. He utilized an immediate
co-ordinate for representing the internal motion due to the elastic deflections and rotations. If the
clamped mode shapes are applied in modelling the elastic motion, the equations of motion for
n-link flexible robot can be written as

MðqÞ.q þ Cðq; ’qÞ’q þ Kq þ gðqÞ ¼ Bs; ð1Þ

that is,

M rrðqÞ M rf ðqÞ

M frðqÞ M ff ðqÞ

" #
.h

.v

" #
þ

C rrðq; ’qÞ C rf ðq; ’qÞ

C frðq; ’qÞ C ff ðq; ’qÞ

" #
’h

’v

" #

þ
0 0

0 K ff

" #
h

v

" #
þ

grðqÞ

gf ðqÞ

" #
¼

I

0

" #
s; ð2Þ

where r and f denote rigid and flexible parts, respectively. The generalized co-ordinate of the
system is defined as

q ¼ ½y1?yn v1;1?v1;m1
?vn;mn

�T ¼ ½hTvT�TARnþm;

where hARn is the joint variable, vARm is the flexible variable, and vi;j means the jth vibration
mode of the ith link. Actually, vi;js are the component mode solutions, which will be explained in
detail in the next section. MðqÞARðnþmÞ�ðnþmÞ is the inertia matrix, Cðq; ’qÞARðnþmÞ�ðnþmÞ is the
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Coriolis and centripetal matrix, KARðnþmÞ�ðnþmÞ is the stiffness matrix, gARnþm is the gravity
vector, BARðnþmÞ�n is the input matrix, and sARn is the joint torque.

2.2. Modal accessibility

The vibration of a flexible robot sometimes cannot be controlled. This may result from the
locations of actuators and the geometrical shapes of structures. Previous studies showed
the configuration-dependent vibration controllability (or accessibility) of multi-link robots; see
Refs. [1,9]. According to Ref. [1], in PUMA-typed 3-D two-link flexible robots there are sets of
configurations where certain horizontal vibration modes are not controllable. To explore the
linear vibration controllability, they reformulated Eq. (2) to get set-point regulation model by
linearizing all the non-linear forces. As a background work of this paper, we briefly review the
accessibility of vibration modes in multi-link systems, following the work in Ref. [1].

Consider a 3-D two-link flexible robot, shown in Fig. 1, whose geometric shape is determined
by y2 and y3: If we assume that the motion of the robot has taken place at a stationary position
h ¼ hd ; the Coriolis and centripetal force is negligible. In addition, the dependency on flexure
variables within inertia and gravity matrices becomes negligible, so that we get MðqÞ ¼
MðhdÞ; gðqÞ ¼ gðhd Þ: If we define

*v9v � K�1
ff gf ðhd Þ;

*s9s � grðhdÞ; ð3Þ

then, we can get a linearized dynamic equation from Eq. (2) as

.h

.*v

" #
¼ �

H rrðhd Þ H rf ðhdÞ

H frðhdÞ H ff ðhdÞ

" #
0 0

0 K ff

" #
h

*v

" #
�

*s

0

" # !
; ð4Þ

where

H rrðhd Þ H rf ðhdÞ

H frðhdÞ H ff ðhdÞ

" #
¼

M rrðhdÞ M rf ðhd Þ

M frðhd Þ M ff ðhdÞ

" #�1

:

The lower part of the above equation denotes the motion of vibration. We make modal
transformation to this part satisfying

U�1ðH ff K ff ÞU ¼ X; ð5Þ

where XARm�m is the diagonal eigenvalue matrix and UARm�m is the eigenvector matrix. Then, evv
can be expressed by the linear combination of the eigenvectors as

*v ¼ Ug;

where gARm is the modal co-ordinate. The transformed vibration equation becomes

.g ¼ �Xg þ C*s; ð6Þ

where C ¼ U�1H frARm�n: According to Ref. [1], if the row of C has a non-zero entry, the
corresponding vibration mode is accessible. The level of accessibility of the ith mode at a hd is
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defined as

aiðhdÞ ¼
ffiffiffiffiffiffiffiffi
cic

T
i

q
;

where ci is the ith row vector of C: If aiðhdÞ happens to be zero, the ith mode cannot be controlled
by the actuator input. Over the whole space of joint configurations, we could notice singularity
lines where ais are zero. The inaccessible modes appeared always in horizontal vibration of the
robot. Consequently, we must avoid the singular configurations as the final postures after
horizontal movements.

The physical meaning of those inaccessible configurations remains unanswered as far as the
authors’ knowledge goes. It should be answered for better control, and to know the internal
physics is the fundamental step. The aim of the present paper is, therefore, to prepare an answer
for the question, which is very affirmative and has clear physical interpretation.

3. Horizontal dynamic equation: system mode approach

For deriving dynamic equations, the first thing to do is to determine the series solutions of
mathematical vibration model. The vibrations of links in the most flexible robots have been
modelled by the assumed component mode solutions as mentioned before. For illustration of
component modes, consider the horizontal deflections of 3-D two-link flexible robot depicted in
Fig. 2. The horizontal vibrations are defined from the roots of elastic links. In the component
mode description, the natural frequencies and mode shapes are obtained by solving the assumed
mode of each link independently without considering the other links. Thus, the component mode
description is a well-known and conventional method for modelling vibration of flexible robots.
By combining all the modal solutions of every link, the equations of motion for the total system
will be obtained [12]. These solutions are included into kinematic and dynamic modelling. The
degrees of freedom of a system with accurate model could be quite large. In many cases, we need
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model reduction in order to make the system manageable both for controller and for observer
design. The initial step to this is the eigenvalue decomposition of whole dynamics. This will result
in synthesized modes which represent the vibration modes of whole body [13,14]. Then, the higher
modes will be removed, regarding the bandwidth of the system (plant, actuator, sensor, etc.) or
other kinds of reduction criteria.

Another way of modelling the vibration is the system mode approach [15–17]. According to this
approach, the natural modes are obtained by considering all the flexible links as one connected
flexible structure. We do not reduce the original system into simpler pieces like the component
mode approach. To solve the system modes, a set of partial differential equations (PDEs) for all
the flexible elements is solved simultaneously with every boundary condition. The natural modes
from the system mode approach are thus related to the whole body. The approach produces exact
modes without matrix eigenvalue decomposition. Different from the vibration defined in Fig. 2,
the horizontal vibration is defined by the deviation from the rigid configuration of whole body as
shown in Fig. 3. The modal frequencies and mode shapes of system modes contain the elastic
properties of the overall structure. One advantage of the system mode method is that there is no
need to incorporate large dimensional vibration modes. Since the system mode offers the exact
vibration modes of whole body, one can apply just the required amount of lower modes. This
removes the model reduction procedure, which is a difficult step in assumed mode method.
Another advantage is that it is useful for viewing the rigid–flexible interactive properties of
dynamics when the equation of motion is constructed using exact system mode solutions. As far
as the authors’ knowledge goes, the dynamic equations for flexible robots with system modes have
not been tried before. Thus, in this section, after a brief explanation on the system mode analysis
on horizontal vibration of 3-D two-link flexible robot [17], the equations of motion will be
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formulated by using the results of system mode analysis. The resulting equations will provide an
essential perspective to examining the accessibility and the identifiability of flexible systems.

3.1. System mode analysis for horizontal vibration

Consider a two-link flexible robot in Fig. 3, fixed at a configuration. Link 2 and Link 3
represent the first and the second elastic link, respectively. The horizontal bending vibration of
two flexible links can be represented by the constrained PDEs:

EI2
@4y2ðx2; tÞ

@x4
2

þ r2 .y2ðx2; tÞ ¼ 0;

EI3
@4y3ðx3; tÞ

@x4
3

þ r3 .y3ðx3; tÞ ¼ 0; ð7Þ

where EIi and ri means, respectively, flexural rigidity and mass density of Link i in the horizontal
direction, which are constant along the side of each link. The effect of torsional vibration,
accompanied by the horizontal vibration, is described by

GJ2
@2T2ðx2; tÞ

@x2
2

� b2
.T2ðx2; tÞ ¼ 0;

GJ3
@2T3ðx3; tÞ

@x2
3

� b3
.T3ðx3; tÞ ¼ 0; ð8Þ

where Ti is the torsional deflection of Link i: GJi and bi are the torsional rigidity and polar
moment of inertia per unit length of Link i; respectively. The horizontal bending vibration yðx; tÞ
for whole body can be expressed by patching the solutions of y2ðx2; tÞ and y3ðx3; tÞ such that

yðx; tÞ ¼
y2ðx2; tÞ ¼

Pm
j¼1 f2jðx2ÞzjðtÞ; 0pðx ¼ x2ÞpL2;

y3ðx3; tÞ ¼
Pm

j¼1 f3jðx3ÞzjðtÞ; 0pðx � L2 ¼ x3ÞpL3;

(
ð9Þ

where fij represents the jth system mode solution of Eq. (7) for Link i section, and zjðtÞ is the jth
time solution. L2 and L3 are the lengths of Link 2 and Link 3, respectively. As for the torsional
vibration, since the majority of torsional vibration occurs in the inner link, it is reasonable to
assume that T3ðx3; tÞ 	 0: Thus,

Tðx; tÞ ¼
T2ðx2; tÞ ¼

Pm
j¼1 Zjðx2ÞzjðtÞ; 0pðx ¼ x2ÞpL2;

T3ðx3; tÞ ¼ 0; 0pðx � L2 ¼ x3ÞpL3;

(
ð10Þ

where Zj is the jth system mode shape for torsional vibration of Link 2 section. If we perform the
separation of variables by utilizing the normal mode time solution as

zjðtÞ ¼ expðojtÞ; ð11Þ
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we get ordinary differential equations (ODEs) for bending and torsional vibration such that

d4fijðxiÞ

dx4
2

� l4ijfijðxiÞ ¼ 0; i ¼ 2; 3; j ¼ 1;y;m;

d2Zjðx2Þ

dx2
2

þ k2
j Zjðx2Þ ¼ 0; j ¼ 1;y;m; ð12Þ

where l4ij9rio
2
j =EIi and k2

j 9b2o2
j =GJ2: The corresponding solutions can be given in the following

forms:

fijðxiÞ ¼ Ai sinðlijxiÞ þ Bi sinhðlijxiÞ þ Ci cosðlijxiÞ þ Di coshðlijxiÞ;

Zjðx2Þ ¼ A4 sinðkjx2Þ þ B4 cosðkjx2Þ: ð13Þ

The boundary conditions at the joint is simply considered as the clamped end. Thus, we have

y2ð0; tÞ ¼ 0; y0
2ð0; tÞ ¼ 0; T2ð0; tÞ ¼ 0; ð14Þ

where ð�Þ0 means spatial derivative with respect to considered variable. At the elbow mass, the
following are satisfied:

y2ðL2; tÞ ¼ y3ð0; tÞ;

y02ðL2; tÞ � T2ðL2; tÞ sin y3 ¼ y0
3ð0; tÞ;

EI2y00
2ðL2; tÞ ¼ EI3y00

3ð0; tÞ � Ic .y
0
2ðL2; tÞ;

EI2y000
2 ðL2; tÞ ¼ Mc .y2ðL2; tÞ þ EI3y0003 ð0; tÞ;

GJ2T 0
2ðL2; tÞ ¼ Jc

.T2ðL2; tÞ; ð15Þ

where Ic is the mass moment of inertia for elbow mass in k2 ¼ i2 � j2 direction shown in Fig. 3, Jc

is the moment of inertia of the total outer body from the center in the direction of the torsional
moment, and Mc denotes the elbow mass. In Eq. (15), the first two conditions are position and
slope continuity, the third and fourth mean bending moment and shear force balances, and the
last condition is the torsional moment balance. At the tip of the robot, there are two more
boundary conditions:

EI3y003ðL3; tÞ ¼ �Itip .y
0

3ðL3; tÞ;

EI3y0003 ðL3; tÞ ¼ Mtip .y3ðL3; tÞ; ð16Þ

where Itip and Mtip denote inertia and mass of tip element, respectively. Eq. (16) corresponds to
the moment balance and shear force balance. Substituting Eqs. (11) and (13) into boundary
conditions in Eqs. (14)–(16), we obtain linear equations as

HðojÞx ¼ 0; ð17Þ

where x ¼ ½A2 B2 C2 D2 A3 B3 C3 D3 A4 B4�T is a vector of undetermined constant. The
eigenvalues (or natural frequencies) of whole system are the solutions of the frequency equation
given by

detðHðojÞÞ ¼ 0: ð18Þ

For the determined solutions, non-trivial x’s, which are called eigenvectors, will be obtained in the
null space of HðojÞ: In the subsequent development, suppose that the solutions of Eq. (18) are
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distinct. The imposition of all the boundary conditions offers us a useful orthogonal relation as
follows: Z L2

0

r2f2iðx2Þf2jðx2Þ dx2 þ
Z L3

0

r3f3iðx3Þf3jðx3Þ dx3 þ
Z L2

0

b2Ziðx2ÞZjðx2Þ dx2

þ Mcf2iðL2Þf2jðL2Þ þ Icf
0

2iðL2Þf
0
2jðL2Þ þ Mtipf3iðL3Þf3jðL3Þ

þ Itipf
0
3iðL3Þf

0
3jðL3Þ þ JcZiðL2ÞZjðL2Þ ¼ 0 if iaj: ð19Þ

For the proof, refer to Ref. [17]. Further, if we neglect the terms of the first-order derivative in
Eq. (19) since Ic and Itip are considerably small, we can rewrite Eq. (19) in a more compact form:I

D2

r2f2iðx2Þf2jðx2Þ dx2 þ
I

D3

r3f3iðx3Þf3jðx3Þ dx3

þ
I

D2

b2Ziðx2ÞZjðx2Þ dx2 ¼ 0 if iaj; ð20Þ

where
H

means the integral which includes lumped elements. D2 and D3 denote the appropriate
integral domains in Link 2 and Link 3, respectively. If i and j are equal, we normalize the integral
value in Eq. (20) as unity.

3.2. Lagrangian dynamic equation

We consider the Lagrangian dynamics associated with horizontal motion of a 3-D two-link
flexible robot applying the system mode solutions. Since we deal with only the horizontal motion,
y2 and y3 are regarded as geometric parameters. However, they will appear in the symbolic
equation in order for us to change the value easily. The vertical deflection due to the gravity force
is neglected as if the stiffness were infinite in vertical direction. Let i0; j0; and k0 be the unit
vectors with respect to inertial frame fX0;Y0;Z0g: And let a frame fX1;Y1;Z1g be a body fixed co-
ordinate with unit vectors i1; j1; and k1 as shown in Fig. 3. We define ii; i ¼ 2; 3; as a unit vector
to outward direction of the ith link attached at the body, and ji; i ¼ 2; 3; as a unit vector normal
to the plane containing ii and k0 vectors. Mathematically, it can be written that ji ¼ ðk0 �
iiÞ=jjk0 � iijj: Hence, ki; i ¼ 2; 3; is defined as the common normal to both ii and ji according to
right-hand co-ordinate convention. The position vector at a point of Link 2 can be written as

r2ðx2; tÞ ¼ x2i2 þ y2ðx2; tÞj2; ð21Þ

where x2 is the distance from the root of Link 2 to the point of interest. The second term is the
elastic deflection, moving in the horizontal direction. Similarly, the position vector to a point of
Link 3 can be written as

r3ðx3; tÞ ¼ L2i2 þ x3i3 þ y3ðx3; tÞj3; ð22Þ

where x3 is the distance from the root of Link 3 to the point of interest. With the help of the
vibration described by system modes, r3 could be represented in a concise form. The velocities of
r2 and r3 are

’r2ðx2; tÞ ¼ ’r2ðx2; tÞ
B þ y1k0 � r2ðx2; tÞ;

’r3ðx3; tÞ ¼ ’r3ðx3; tÞ
B þ y1k0 � r3ðx3; tÞ; ð23Þ
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where

’rB
2 ðx2; tÞ ¼ ’y2ðx2; tÞj2;

’rB
3 ðx3; tÞ ¼ ’y3ðx3; tÞj3

mean the time derivatives of r2ðx2; tÞ and r3ðx3; tÞ with respect to body fixed frame. The cross-
product between position and velocity yields angular momentum:

Hd ¼ J1
’y1k0 þ

I
D2

r2 � ’r2 dm2 þ
I

D3

r3 � ’r3 dm3

¼ J1
’y1k0 þ

X3
i¼2

I
Di

ri � ’ri dmi; ð24Þ

where J1 is the rotor inertia of joint 1. It can be further written thatX3
i¼2

I
Di

ri � ’ri dmi ¼
X3
i¼2

I
Di

ðri � jiÞ ’yiðxi; tÞ dmi þ
X3
i¼2

’y1IIi � k0; ð25Þ

since X3
i¼2

I
Di

ri � ð’y1k0 � riÞ dmi ¼
X3
i¼2

’y1IIi � k0;

where IIi is the inertia tensor of the ith link. The first term on the right side of Eq. (25) is the
angular momentum with respect to the body fixed frame, called modal angular momentum [18].

The kinetic energy of the considered two-link flexible robot can be written

T ¼
1

2
J1
’y21 þ

X3
i¼2

1

2

I
Di

’rTi ðxi; tÞ’riðxi; tÞ dmi þ
1

2

I
D2

ð ’T2ðx2; tÞÞ
2 dm2; ð26Þ

where the last term is due to the torsional motion of Link 2. Using the relationship for the time
derivative in Eq. (23), the kinetic energy can be separately rewritten as

T ¼ T0 þT1 þT2 þT3 þT4; ð27Þ

where

T0 ¼
1

2
J1
’y21;

T1 ¼
1

2

X3
i¼2

k0 � IIi � k0
’y21;

T2 ¼
X3
i¼2

’y1k0 �
I

Di

ðri � jiÞ ’yiðxi; tÞ dmi;

T3 ¼
1

2

X3
i¼2

I
Di

ð ’yiðxi; tÞÞ
2 dmi;

T4 ¼
1

2

I
D2

ð ’T2ðx2; tÞÞ
2 dm2:
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The first three terms of Eq. (27) can be obtained by the inner product between Hd and the angular
velocity of the rigid body. T0 is the kinetic energy from the rotation of rotor and T1 is the kinetic
energy from the rigid rotation of robot. T2 is the kinetic energy due to the momentum transfer
between modal angular momentum and rigid body angular momentum. If T2 is zero, there is no
way of energy transfer between elastic motion and rigid motion. T3 and T4 are the modal kinetic
energy only from elastic motion. Rewriting y2ðx2; tÞ and y3ðx3; tÞ using modal co-ordinates in
Eq. (13) leads to

T2 ¼
X3
i¼2

’y1k0 �
I

Di

ðri � jiÞ
Xm

i¼1

fijðxiÞ’zjðtÞ

 !
dmi

" #
;

T3 ¼
1

2

X3
i¼2

I
Di

Xm

j¼1

fijðxiÞ’zjðtÞ

 !2

dmi

24 35;
T4 ¼

1

2

I
D2

Xm

j¼1

Zjðx2Þ’zjðtÞ

 !2

dm2: ð28Þ

If we neglect gravity potential energy, the unique potential energy will be caused by the elastic
potential energy such that

V ¼
1

2

X3
i¼2

Z Li

0

EIiðy00i ðxi; tÞÞ
2 dxi þ

1

2

Z L2

0

GJ2ðT 0
2ðx2; tÞÞ

2 dx2: ð29Þ

The first and the second terms of Eq. (29) are the strain energy from the bending and the torsional
vibrations, respectively. Again, applying the modal co-ordinates to Eq. (29), we get

V ¼
1

2

X3
i¼2

Z Li

0

EIi

Xm

j¼1

f00
ijðxiÞzjðtÞ

 !2

dxi þ
1

2

Z L2

0

GJ2

Xm

j¼1

Z0jðx2ÞzjðtÞ

 !2

dx2: ð30Þ

Non-conservative work from joint torque is formulated as

dW ¼ dy1 � t1: ð31Þ

Let us define the Lagrangian L :¼ T�V so that the equations of motion can be obtained from
the Lagrangian dynamic formulation as

d

dt

@L

@ ’qi

� �
�

@L

@qi

¼ ti; i ¼ 1;y;m þ 1; ð32Þ

where qi is the ith element of generalized co-ordinate which is made up of

q ¼ ½y1 z1 z2?zm�T ¼ ½y1 zT�ARmþ1:

It is satisfied that ti ¼ 0; i ¼ 2;y;m þ 1; since there is no input to the direction of modal
co-ordinates. Applying kinetic and potential energies in Eqs. (27) and (30) to the Lagrangian L;
we have symbolic equations of motion based on the system mode approach as follows:

Mrr M rf

M fr M ff

" #
.y1

.z

" #
þ

Crr C rf

C fr 0

" #
’y1

’z

" #
þ

0 0

0 K ff

" #
y1
z

" #
¼

t1
0

" #
; ð33Þ
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where the bold characters stand for vector quantities and the normal characters for scalar
quantities. The inertia matrix contains information about the angular momentum and kinetic
energy. Each term of the inertia matrix is

Mrr ¼ J1 þ k0 � ðII2 þ II3Þ � k0AR;

M rf ¼ ½h1;y; hm�AR1�m;

where hj9
X3
i¼2

I
Di

k0 � ðri � jiÞfijðxiÞ dmi

� �
; j ¼ 1;y;m;

M fr ¼ MT
rf ARm�1;

M ff ¼ Im ARm�m; ð34Þ

where Im is an m-dimensional identity matrix. We utilize the orthogonality relation in Eq. (20) for
removing the off-diagonal elements in M ff : Mrr is the inertia for rotation of joint 1 centered at Z0-
axis. M rf is the coupled inertia. All the elements of M are constant except Mrr; Mrr contains
flexure variables, but usually it is assumed constant by the linearization. C is arranged to satisfy
the skew symmetry of ’M � 2C [19]. Finally, the stiffness matrix is simply given by

K ff ¼ diagfo2
1;o

2
2;y;o2

mg; ð35Þ

where oj is the jth modal frequency from the analysis of the system mode. The constrained
vibration equation is always given in a simply decomposed form:

.z þ K ff z ¼ 0

by fixing y1 	 0:

4. Accessibility and identifiability

The accessibility condition in a physical plant is the same no matter what method we may
describe the dynamics with. In this context, the discussion about the conditions and the physical
meaning for the accessibility is made based on the dynamic equation derived in the previous
section. As the duality with the accessibility, the identifiability is also defined and examined.

Suppose that the actuation and sensing take place only at joint 1. Applying the same
assumptions that were made in Eq. (4), M is reduced to be constant and the Coriolis and
centripetal force are negligible. By combining the upper part with the lower part of Eq. (33), we
obtain an equation associated with the joint torque and system modes of vibration as

ðI � M�1
rr M frM rf Þ.z þ K ff z ¼ �M�1

rr M frt1; ð36Þ

where Mrr is always positive, and so is M�1
rr : Eq. (36) displays the same form as the fast subsystem

of the singularly perturbed model [20]. If we define u19M�1
rr t1; u1 becomes a new control input.

Through the coupled inertia M fr; u1 controls the dynamics of vibration. In this point of view, M fr

acts as the AIC vector. The explicit form of the jth element of M fr; that is hj; in Eq. (34) can be
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rewritten as

hj ¼
X3
i¼2

I
Di

siðxiÞfijðxiÞ dmi

� �
; ð37Þ

where siðxiÞ ¼ k0 � ðri � jiÞ is the normal distance from the axis of rotation to a robot’s body point;
refer to Fig. 3 for graphical definition. Geometrically it is satisfied that

s2ðx2Þ ¼ x2 sin y2; s3ðx3Þ ¼ L2 sin y2 þ x3 sinðy2 þ y3Þ: ð38Þ

From Eq. (37), hj is the first moment conceptually, where siðxiÞ is the length of arm from k0-axis,
and fijðxiÞ acts as the physical quantity like the distributed linear force. According to Eq. (25), the
projected angular momentum due to the pure elastic motion can be written as

k0 � Hd ¼
Xm

j¼1

hj ’zjðtÞ; ð39Þ

where hj is the weighting coefficient of the angular momentum caused by the jth mode. We call hj

as the jth modal angular momentum coefficient (MAMC). This means M fr consists of MAMCs of
all the vibration modes. If hj happens to be zero at the given configuration, there is no
contribution to the system’s angular momentum in the k0 direction by the jth vibration mode. If
the magnitude of hj is large, the contribution of the jth mode to the angular momentum is also
increased. The inner product of ’y1k0 and Hd results in the kinetic energy T2: That hj ¼ 0 means in
a sense no momentum transfer between joint angular motion and the jth vibration mode, and the
vibratory motion and angular rotation are appearing indifferent to each other.

Theorem 1. If the jth element of M fr (that is, MAMC of the jth mode) is zero, the jth vibration mode
in Eq. (36) is not accessible by the input torque at the given configuration. Otherwise, the jth mode is

accessible at the configuration.

Proof. Consider that the jth element of M fr is zero such that

M fr ¼ ½h1 ? hj�1 0 hjþ1 ? hm�T:

Then, the jth row and column of M frM rf also become zero, which yields the jth modal equation to
be

.zj þ o2
j zj ¼ 0: ð40Þ

This shows that the jth modal equation in Eq. (36) is a pure oscillator; this mode is completely
isolated from the input, as well as from the other coupled vibration modes. If hj is not zero, the
control input can access the jth vibration mode through hj: We can expect that the accessibility be
increased as the magnitude of hj is larger. This concludes the proof. &

Following the same lines as with accessibility, the identifiability condition can be derived by
investigating the following equation:

ðMrr � M rf M frÞ.y1 þ M rf K ff z ¼ t1; ð41Þ
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which is obtained by plugging the lower part into the upper part in Eq. (33). From the above
equation, the second term on the left side is the stiffness force interacting with the joint motion,
and M rf determines the influence of the stiffness force.

Theorem 2. Consider the system in Eq. (41) with feedback control from the joint measurements such
that

t1 ¼ �Kpy1 � Kv
’y1: ð42Þ

If the jth element of M rf (that is, hj) is zero, the jth mode cannot be identified by the joint sensor at
the given configuration. Otherwise, the jth mode is identifiable by the joint sensor at the

configuration.

Proof. Introducing control input in Eq. (42) into Eq. (41), it becomes

ðMrr � M rf M frÞ.y1 þ Kv
’y1 þ Kpy1 ¼ �M rf K ff z; ð43Þ

which implies a stable joint feedback system perturbed by the stiffness force on the right-hand side
of the equation. Suppose that the MAMC of the jth mode be zero. Then, from Theorem 1, zj will
be sinusoidal for a non-zero initial condition. The stiffness force from the jth mode is always
filtered by M rf before acting on the joint dynamics in Eq. (43). If we remember the previous
assumption that all the system modes are distinct, the portion of the stiffness force from the jth
mode will be sifted through M rf : In a stable linear system, a sinusoidal output with a certain
frequency will be observed only if there is a sinusoidal input with the same frequency. In the light
of this fact, the joint encoder will never exhibit the component of the jth modal frequency for zero
hj: For non-zero hj; the jth oscillation mode will appear in the joint response, even though it is
damped somewhat due to the joint feedback. &

4.1. Numerical example

We illustrate an example for calculating MAMCs using the system mode method. Consider a
3-D two-link flexible robot whose physical parameters are summarized in Table 1. We do not
consider the flexibility of the link in the direction of the gravity. First, we solve the eigenvalue
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Table 1

Physical parameters

Contents Symbol Value

Length of Link 2 L2 0.52 (m)

Length of Link 3 L3 0.52 (m)

Mass of Link 2 M2 0.44 (kg)

Mass of Link 3 M3 0.16 (kg)

Mass of elbow actuator Mc 1.62 (kg)

Mass of lumped tip Mtip 0.29 (kg)

Stiffness of Link 2 EI2 24:4 ðN m2Þ
Stiffness of Link 3 EI3 6:35 ðN m2Þ
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problem using Eqs. (17) and (18). The solutions are plugged into Eq. (13) to obtain system mode
shapes. Then, we compute MAMCs numerically following Eq. (37). Repeat the procedure by
changing configurations of the robot gradually. Figs. 4 and 5 show the MAMCs of the first and
the second system modes magnified 10 times. They vary from configuration to configuration. One
can notice singular configurations where the MAMCs become zero. At those configurations, one
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Fig. 4. Modal angular momentum coefficient: the first mode. (a) Contour plot; (b) 3-D plot.
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or all of the vibration modes cannot be accessed by t1: At a glance, as Link 2 is more directed to
k0; the MAMCs tend to be smaller. The configurations close to singular lines correspond to the
weakly accessible configurations. In the modal feedback control [21,22], the signs of the AICs are
greatly important to the stability. In our terminology, the MAMCs will have the same meaning as
the AICs. At weakly accessible configurations, the signs of the MAMCs might be estimated wrong
in sign due to inexact modelling of kinematic and dynamic parameters, external disturbances, and
measurement errors. The reverse feedback, no matter how small it may be, will cause the
instability. The need for robust control in the weakly accessible configurations stems from these
reasons, so the present control system is a good test plant for verifying the robustness of modal
feedback controllers.

According to Figs. 4 and 5, at ðy2; y3Þ ¼ ð0�; 0�Þ and ðy2; y3Þ ¼ ð180�; 0�Þ; the first and the
second modes are inaccessible simultaneously. As for the first mode, the maximum magnitude of
the MAMC shows at ðy2; y3Þ ¼ ð790�; 0�Þ; and as for the second mode, the maximum magnitude
of the MAMC will be at ðy2; y3Þ ¼ ð790�; 180�Þ: If we remind the geometric structure of robot in
mind, MAMCs have the following relations:

hjð�y2;�y3Þ ¼ �hjðy2; y3Þ

and

hjðp� y2;�y3Þ ¼ hjðy2; y3Þ;

which are evident from Eqs. (37) and (38) without difficulty. According to the definition in
Eq. (37), the modal angular momentum strongly depends on the mass distribution and the link
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Fig. 6. POSTECH flexible robot: experimental system.
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configurations of the robot. The position of lumped masses and the addition of the payload mass
will change the modal angular momentum. This implies that the modal angular momentum can be
effectively changed by varying those parameters. Many of the previous researches on the
controllability of the flexible robots and controllability related with flexible payloads may be put
into the same category: the analysis of modal angular momentum.

In the foregoing discussion, the priority of the selection of the arm configuration for horizontal
rotation lies in guaranteeing the satisfactory amount of accessibility. If it is satisfied, the next
consideration would be the minimization of the rotational inertia Mrr: This is because the smaller
Mrr reduces the total cost of energy and increases the speed of tasks. Since the rigid body inertia
Mrr in Eq. (34) depends on the robot’s geometry, we can take optimal configuration that
minimizes Mrr as well as guarantees the sufficient accessibility for every the significant mode.

5. Experimental results

We performed experiments to justify the theoretical results. The experimental robot is shown in
Fig. 6. Its physical parameters are the same as in Table 1. The angle of joint 1 was measured by
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optical encoder and the elastic vibration was measured by strain gauges at each side of elastic
links. Since the test of the accessibility might be affected by the performance of the applied
controller, we conducted the experiments on the identifiability, rather than on the controllability.
Initially, we excited all the modes of vibration by exerting an impulse at the tip of robot with a
hammer. Then we recorded the responses measured by strain gauges and joint encoder
simultaneously. We checked the identifiability at three different configurations using the maps in
Figs. 4 and 5:

(C1) ðy2; y3Þ ¼ ð�24�; 85�Þ; where h1 is zero,
(C2) ðy2; y3Þ ¼ ð18�; 81�Þ; where h2 is zero, and
(C3) ðy2; y3Þ ¼ ð50�; 40�Þ; where both h1 and h2 are non-zero.
There are two dominant natural frequencies for those configurations; they are 1.98 and 3:26 Hz
at (C1), 1.95 and 3:38 Hz at (C2), and 1.76 and 4:25 Hz at (C3). At each configuration, the robot
was made to stand still by imposing high servo gains at joints 2 and 3. To exclude the interaction
with the vertical vibration, a modal feedback vibration controller [20] was activated to suppress
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the vertical vibration, while we tested the identifiability of the horizontal vibration. At joint 1, the
following gains were applied to PD joint feedback in Eq. (42):

Kp ¼ 350; Kv ¼ 3:8:

Since the proportional gain is considerably large, the elastic link extended from the rotary joint
behaves almost like the constrained structure [16,23]. Figs. 7–9 show the test responses of joint 1
and the strain gauge attached at Link 3 at (C1)–(C3) cases. In order to clarify the frequency
contents of the signal, each plot in time domain is presented together with its FFT plot. At
configuration (C1) as shown in Fig. 7, the joint encoder could not measure the contents of the first
mode (see Fig. 7(a)), even if the elastic links were oscillating dominantly with the first mode (see
Fig. 7(b)). At configuration (C2), the second flexible mode is hardly identifiable by the joint
encoder. Therefore, the joint could not measure the second mode (see Fig. 8(a)), even though the
strain signals contained the second mode as shown in Fig. 8(b). Finally, Fig. 9 shows the responses
at configuration (C3) where all the modes are identifiable. Both the joint and strain gauge signals
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contain the first and the second modes simultaneously. Conclusively, the theoretical results of
identifiability discussed in the previous section satisfies the experimental results well. Thanks to
the dual relation, the accessibility of those configurations will be readily expected with the test
results of the identifiability; at (C1) and (C2), the first and the second mode would be inaccessible,
respectively, and at (C3), both modes would be accessible.

6. Concluding remarks

For the accessibility and the identifiability of the horizontal vibration in multi-link flexible
robots, we developed the Lagrangian dynamics symbolically associated with the system mode
vibration. Thereby, the meaning of each component of inertia matrix M was understood.
Especially, we realized that

* the off-diagonal inertia M rf (or M fr) consists of all the modal momentum coefficients,
* these coefficients indicate the amount of energy transfer between joint motion and the

corresponding vibration modes, and
* if any element of the off-diagonal inertia becomes zero, those vibration modes will never be

accessed and never be identified by the joint actuator and by the joint sensor, respectively.

We found that the modal angular momentum coefficients strongly depend on the mass
distribution of robot components as well as the geometric configurations. When selecting a
configuration for horizontal rotation task, we should guarantee the accessibility and the
identifiability up to a sufficient level. In addition, we must consider such issues like minimization
of rigid body inertia, robustness around weakly accessible region, and variation of modal angular
momentum coefficients due to grasping payloads at the same time. To deal with these matters, the
theoretical results addressed in this paper will provide basis knowledge.
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